$\mathrm{N}=2$ superconformal algebra on higher-genus Riemann surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 252911
(http://iopscience.iop.org/0305-4470/25/10/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:30

Please note that terms and conditions apply.

$\boldsymbol{N}=\mathbf{2}$ superconformal algebra on higher-genus Riemann surfaces

Kuang Le-man
Department of Physics, Changsha Normal University of Water Resources and Electric Power, Hunan 410077, People's Republic of China

Received 25 November 1991

Abstract

Using the Krichever-Novikov bases and the operator product expansions, we construct the $N=2$ superconformal algebra on a genus-g Riemann surface and the bRST charge corresponding to the superconformal algebra. We also check the nilpotency of the BRST charge, and obtain the critical dimension of spacetime as $D=2$ for the $N=2$ superconformal theory on the higher-genus Riemann surface.

1. Introduction

The superconformal algebras on a higher-genus Riemann surface Σ (or called the Krichever-Novikov superalgebras) and their representations play an important role in the study of superconformal field theory over Σ. The $N=0$ and 1 superconformal algebras [1,2] on Σ are now relatively well understood, but the $N>1$ superconformal algebras are unknown. In this paper, we begin a study of the $N=2$ superconformal algebra on the genus- g Riemann surface Σ. Then we construct the brst charge corresponding to the superconformal algebra and check the nilpotency of the bRST charge.

2. kN bases

We consider a compact Riemann surface Σ of genus g with the two distinguished points P_{+}and P_{-}as well as local coordinates z_{+}and z_{-}around them such that $z_{ \pm}\left(P_{ \pm}\right)=0$. Krichever and Novikov (KN) [3] have shown that there exist a whole family of meromorphic forms $f_{j}^{(\lambda, \chi)}$ which are holomorphic everywhere on Σ except possibly for poles or branch points in P_{+}and P_{-}. And $f_{j}^{(\lambda, x)}$ are the bases of the space of the meromorphic forms with the conformal weights λ, called KN bases. The expansions of $f_{j}^{(\lambda, x)}$ near $P_{ \pm}$can be written as

$$
\begin{equation*}
f_{j}^{(\lambda, x)}=z_{ \pm}^{ \pm j \pm \chi-S(\lambda)}\left[1+\mathrm{O}\left(z_{ \pm}\right)\right]\left(\mathrm{d} z_{ \pm}\right)^{\lambda} \tag{1}
\end{equation*}
$$

where $S(\lambda)=\frac{1}{2} \tilde{g}-\lambda(\tilde{g}-1)$, and χ is a real parameter. The index j in (1) takes integer (half-integer) values when g is even (odd). For different values of (λ, χ), one can obtain the meromorphic vector fields $e_{j}=f_{j}^{(-1,0)}$, the meromorphic functions $A_{j}=f_{j}^{(0,0)}$, the one-differentials $\omega_{j}=f_{j}^{(1,0)}$, and the quadratic-differentials $\Omega_{j}=f_{j}^{(2,0)}$. In order to describe the fermionic sector, we also need the meromorphic spinor fields $g_{\alpha}=f_{\alpha}^{(-1 / 2,0)}$,
$\frac{3}{2}$-differentials $k_{\alpha}=f_{-\alpha}^{(3 / 2,0)}, \frac{1}{2}$-differentials $h_{-r}=f_{r}^{(1 / 2,0)}$. They satisfy the following duality relations,

$$
\begin{array}{ll}
\frac{1}{2 \pi \mathrm{i}} \oint_{C_{r}} e_{i}(Q) \Omega_{j}(Q)=\delta_{i j} & \frac{1}{2 \pi \mathrm{i}} \oint_{C_{\tau}} A_{i}(Q) \omega_{j}(Q)=\delta_{i j} \\
\frac{1}{2 \pi \mathrm{i}} \oint_{C_{\tau}} g_{\alpha}(Q) k_{\beta}(Q)=\delta_{\alpha \beta} & \frac{1}{2 \pi \mathrm{i}} \oint_{C_{r}} h_{\alpha}(Q) h_{\beta}^{+}(Q)=\delta_{\alpha \beta} . \tag{2}
\end{array}
$$

where $h_{\alpha}^{+}(Q)=h_{-\alpha}(Q)$ and $Q \in \mathbf{\Sigma}$. The contours $C_{\tau}=\{Q \in \Sigma, \tau(Q)=\tau\}$ are level lines of the univalent function $\tau(Q)=\operatorname{Re} \int_{Q_{0}}^{Q} \mathrm{~d} p$, where $\mathrm{d} p$, the third kind of differential on Σ with poles of the first order at the points $P_{ \pm}$with residues ± 1, and Q_{0} an arbitrary initial point, and as $\tau \rightarrow \pm \infty$, the contours C_{τ} become circles enveloping the points $P_{ \pm}$.

3. $\mathbf{N}=\mathbf{2}$ superconformal algebra on Σ

The $N=2$ superconformal algebra on the higher-genus Riemann surface Σ is generated by the energy-momentum tensor $T(z)$ and its super-partner $G^{i}(z)(i=1,2)$ and $H(z)$ with the conformal weights $2,3 / 2$ and 1 , respectively. $T(z), G^{i}(z)$ and $H(z)$ can be expanded on the kN bases over Σ :

$$
\begin{align*}
& T(z)=\sum_{n} L_{n} \Omega^{n}(z) \tag{3a}\\
& G^{i}(z)=\frac{1}{2} \sum_{\alpha} G_{\alpha}^{i}(z) k^{\alpha}(z) \tag{3b}\\
& H(z)=\sum_{n} H_{n} \omega^{n}(z) . \tag{3c}
\end{align*}
$$

From (2) and (3), we can obtain the generators of the $N=2$ superconformal algebra on Σ :

$$
\begin{align*}
& L_{n}=\frac{1}{2 \pi \mathrm{i}} \oint_{C_{\tau}} \mathrm{d} z e_{n}(z) T(z) \tag{4a}\\
& G_{\alpha}^{i}=\frac{2}{2 \pi \mathrm{i}} \oint_{C_{r}} \mathrm{~d} z g_{\alpha}(z) G^{i}(z) \tag{4b}\\
& H_{n}=\frac{1}{2 \pi \mathrm{i}} \oint_{C_{\tau}} \mathrm{d} z A_{n}(z) H(z) \tag{4c}
\end{align*}
$$

where we have used the following notation

$$
\begin{align*}
& A_{n}(z)=z^{n-1 / 2 g}[1+O(\bar{z})] \tag{5a}\\
& \omega_{n}(z)=z^{-n+1 / 2 g-1}[1+O(z)] \tag{5b}\\
& g_{\alpha}(z)=z^{\alpha-g+1 / 2}[1+O(z)] \tag{5c}\\
& k_{\alpha}(z)=z^{-\alpha+g-3 / 2}[1+O(z)] \tag{5d}\\
& e_{n}(z)=z^{n-g_{0}-2}[1+O(z)] \tag{5e}\\
& \Omega_{n}(z)=z^{n-g_{0}+1}[1+O(z)] \tag{5f}\\
& h_{r}^{+}(z)=h_{-r}(z)=z^{r-1 / 2}[1+O(z)] \tag{5g}
\end{align*}
$$

where $g_{0}=3 \mathrm{~g} / 2$, and z is the local coordinate in the neighbourhood of the point P_{+}
that vanishes at P_{+}. (Note that one can also choose a local coordinate z_{-}that vanishes at P_{-}.)

In the conformal field theory over a genus-zero Riemann surface [4,5], a (anti-)commutator can be expressed equivalently as a complex contour integral. Generalizing it to the higher-genus Riemann surface, we have

$$
\begin{align*}
& {\left[L_{n}, L_{m}\right]=\oint_{C_{r}} \oint_{C_{w}} \frac{d w \mathrm{~d} z}{(2 \pi \mathrm{i})^{2}} e_{m}(w) e_{n}(z) T(z) T(w)} \tag{6}\\
& {\left[L_{n}, G_{\alpha}^{i}\right]=\oint_{C_{r}} \oint_{C_{m}} \frac{\mathrm{~d} w \mathrm{~d} z}{(2 \pi \mathrm{i})^{2}} g_{\alpha}(w) e_{n}(z) T(z) G^{i}(w)} \tag{7}\\
& {\left[L_{n}, H_{m}\right]=\oint_{C_{r}} \oint_{C_{w}} \frac{\mathrm{~d} w \mathrm{~d} z}{(2 \pi i)^{2}} A_{m}(w) e_{n}(z) T(z) H(w)} \tag{8}\\
& \left\{G_{\alpha}^{i}, G_{\beta}^{j}\right\}=\oint_{C_{r}} \oint_{C_{w}} \frac{\mathrm{~d} w \mathrm{~d} z}{(2 \pi \mathrm{i})^{2}} g_{\beta}(w) g_{\alpha}(z) G^{i}(z) G^{j}(w) \tag{9}\\
& {\left[G_{a u}^{i}, H_{m}\right]=\oint_{C_{r}} \oint_{C_{w}} \frac{d w \mathrm{~d} z}{(2 \pi i)^{2}} A_{m}(w) g_{\alpha}(z) G^{i}(z) H(w)} \tag{10}\\
& {\left[H_{n}, H_{m}\right]=\oint_{C_{r}} \oint_{C_{w}} \frac{d w \mathrm{~d} z}{(2 \pi \mathrm{i})^{2}} A_{m}(w) A_{n}(z) H(\bar{z}) H(w)} \tag{11}
\end{align*}
$$

where the contours C_{w} envelop the point w.
It has been shown [6] that the singular part of the operator product expansions (OPE) on the higher-genus Riemann surface Σ is independent of genus g, and only the non-singular part depends on the genus g . We can therefore obtain the QPEs on the $\mathrm{\Sigma}$ from the opes [7] on the genus-zero Riemann surface,

$$
\begin{align*}
& T(z) T(w)=\frac{3 D}{2(z-w)^{4}}+\frac{2 T(w)}{\{z-w)^{2}}+\frac{\partial_{w} T(w)}{z-w}+\ldots \\
& T(z) G^{i}(w)=\frac{3 G^{i}(w)}{2(z-w)^{2}}+\frac{\partial_{w} G^{i}(w)}{z-w}+\ldots \\
& T(z) H(w)=\frac{H(w)}{(z-w)^{2}}+\frac{\partial_{w} H(w)}{z-w}+\ldots \\
& G^{i}(z) G^{i}(w)=\frac{D}{2(z-w)^{3}}+\frac{T(w)}{2(z-w)}+\ldots \\
& G^{1}(z) G^{2}(w)=\frac{i H(w)}{(z-w)^{2}}+\frac{\mathrm{i} \partial_{w} H(w)}{2(z-w)}+\ldots \tag{12}\\
& H(z) H(w)=\frac{D}{4(z-w)^{2}}+\ldots \\
& H(z) G^{1}(w)=\frac{i G^{2}(w)}{2(z-w)}+\ldots \\
& H(z) G^{2}(w)=-\frac{i G^{1}(w)}{2(z-w)}+\ldots
\end{align*}
$$

where the dots stand for the terms which are finite as $z \rightarrow w$, and these terms are g-dependent, while they do not contribute to the integrals in equations (6)-(10).

Substituting the above opEs into (6)-(10), and using the following relations about the kN bases on Σ :

$$
\begin{align*}
& e_{n}(w) e_{m}^{\prime}(w)-e_{n}^{\prime}(w) e_{m}(w)=\sum_{s=-g_{0}}^{g_{0}} C_{n m}^{l} e_{n+m-l}(w) \\
& \frac{1}{2} g_{\alpha}(w) e_{m}^{\prime}(w)-g_{\alpha}^{\prime}(w) e_{m}(w)=\sum_{\beta=-g_{0}}^{g_{0}} H_{\alpha m}^{\beta} g_{\alpha+m-\beta}(w) \\
& -A_{n}^{\prime}(w) e_{m}(w)=\sum_{l=-g_{0}}^{g_{0}} B_{n m}^{\prime} A_{n+m-l}(w) \\
& 2 g_{r}(w) g_{s}(w)=\sum_{t=-g / 2}^{g / 2} E_{r s}^{\prime} e_{r+s-l}(w) \tag{13}\\
& 2 i\left[g_{s}(w) g_{r}^{\prime}(w)-g_{s}^{\prime}(w) g_{r}(w)\right]=\sum_{l=-g_{0}}^{g_{0}} D_{r s}^{l} A_{r+s-l}(w) \\
& 2 \mathrm{i} g_{r}(w) A_{m}(w)=\sum_{l=-\mathrm{g} / 2}^{g / 2} F_{r m}^{\prime} g_{r+m-l}(w)
\end{align*}
$$

we obtain the $N=2$ superconformal algebra on Σ :

$$
\begin{align*}
& {\left[L_{n}, L_{m}\right]=\sum_{l=-g_{0}}^{g_{0}} C_{n m}^{l} L_{n+m-i}+\frac{D}{4} \chi_{n m}} \\
& {\left[L_{m}, G_{\alpha}^{i}\right]=\sum_{\beta=-g_{0}}^{g_{0}} H_{\alpha m}^{\beta} G_{\alpha+m-\beta}^{i} \quad(i=1,2)} \\
& {\left[L_{m}, H_{n}\right]=\sum_{i=-g_{0}}^{g_{0}} B_{n m}^{l} H_{n+m-l}} \tag{14}\\
& \left.\left\{G_{r}^{i}, G_{s}^{i}\right\}=\sum_{t=-\mathrm{g} / 2}^{g / 2} E_{r s}^{l} L_{r+s-l}+D \varphi_{r s} \quad \text { (no sum on } i\right) \\
& \left\{G_{r}^{1}, G_{s}^{2}\right\}=\sum_{l=-g_{0}}^{g_{0}} D_{r s}^{l} H_{r+s-l} \quad\left[H_{m}, H_{n}\right]=\frac{D}{4} a_{n m} \\
& {\left[H_{m}, G_{r}^{1}\right]=\sum_{l=-g / 2}^{g / 2} F_{r m}^{l} G_{r+m-1}^{2} \quad\left[H_{m}, G_{r}^{2}\right]=-\sum_{l=-g / 2}^{8 / 2} F_{r m}^{l} G_{r+m-l}^{1}}
\end{align*}
$$

where the structure constants are given by

$$
\begin{aligned}
& C_{n m}^{\prime}=\oint_{C_{r}} \mathrm{~d} w\left[e_{n}(w) e_{m}^{\prime}(w)-e_{n}^{\prime}(w) e_{m}(w)\right] \Omega_{n+m-l}(w) \\
& H_{\alpha m}^{\beta}=\oint_{C_{r}} \mathrm{~d} w\left[\frac{1}{2} g_{\alpha}(w) e_{m}^{\prime}(w)-g_{\alpha}^{\prime}(w) e_{m}(w)\right] k_{\alpha+m-\beta}(w)
\end{aligned}
$$

$$
\begin{align*}
& B_{n m}^{\prime}=-\oint_{C_{r}} \mathrm{~d} w A_{n}^{\prime}(w) e_{m}(w) \omega_{n+m-l}(w) \tag{15}\\
& E_{r s}^{\prime}=2 \oint_{C_{r}} \mathrm{~d} w g_{r}(w) g_{s}(w) \Omega_{r+s-l}(w) \\
& D_{r s}^{l}=2 \mathrm{i} \oint_{C_{r}} \mathrm{~d} w\left[g_{s}(w) g_{r}^{\prime}(w)-g_{s}^{\prime}(w) g_{r}(w)\right] \omega_{r+s-l}(w) \\
& F_{r m}^{l}=2 \mathrm{i} \oint_{C_{r}} \mathrm{~d} w g_{r}(w) A_{m}(w) k_{r+m-l}(w)
\end{align*}
$$

and the central terms by

$$
\begin{align*}
\chi_{n m} & =\oint_{C_{r}} \mathrm{~d} w e_{n}(w) e_{m}^{\prime \prime \prime}(w) \quad \varphi_{r s}=\oint_{C_{r}} \mathrm{~d} w \bar{g}_{r}^{\prime \prime}(w) g_{s}(w) \tag{16}\\
a_{n m} & =\oint_{C_{r}} \mathrm{~d} w A_{n}(w) A_{m}^{\prime}(w) .
\end{align*}
$$

In particular, setting $g=0$ in (15) and (16) one obtains

$$
\begin{array}{ll}
C_{n m}^{l}=(n-m) \delta_{l, 0} & H_{\alpha m}^{\beta}=\left(\frac{1}{2} m-\alpha\right) \delta_{\beta, 0} \\
B_{n m}^{l}=-n \delta_{l, 0} & E_{r s}^{\prime}=2 \delta_{l, 0} \tag{17}\\
D_{r s}^{l}=2 \mathrm{i}(r-s) \delta_{l, 0} & F_{r m}^{l}=\frac{1}{2} \mathrm{i} \delta_{l, 0}
\end{array}
$$

and

$$
\begin{equation*}
\chi_{n m}=\frac{1}{4}\left(n^{3}-n\right) \delta_{m+n, 0} \quad \varphi_{r s}=D\left(r^{2}-\frac{1}{4}\right) \quad a_{n i m}=m \delta_{n+m, 0} \tag{18}
\end{equation*}
$$

Substituting the structure constants and central terms into (14) we obtain the following superalgebra,

$$
\begin{align*}
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{1}{4} D\left(n^{3}-n\right) \delta_{n+m, 0}} \\
& {\left[L_{m}, G_{\alpha}^{i}\right]=\left(\frac{1}{2} m-\alpha\right) G_{m+\alpha}^{i} \quad(i=1,2)} \\
& {\left[L_{m}, H_{n}\right]=-n H_{m+n}} \\
& \left\{G_{r}^{i}, G_{s}^{i}\right\}=2 L_{r+s}+D\left(r^{2}-\frac{1}{4}\right) \delta_{r+s, 0} \quad \text { (no sum on } i \text {) } \\
& \left\{G_{r}^{1}, G_{s}^{2}\right\}=2 \mathrm{i}(r-s) H_{r+s} \tag{19}\\
& {\left[H_{n}, H_{m}\right]=\frac{1}{4} D m \delta_{n+m, 0}} \\
& {\left[H_{m}, G_{r}^{\mathrm{i}}\right]=\frac{1}{2} \mathrm{i} G_{m+r}^{2}} \\
& {\left[H_{m}, G_{r}^{2}\right]=-\frac{1}{2} \mathrm{i} G_{m+r}^{1} .}
\end{align*}
$$

This is just the well known $N=2$ superconformal algebra on a $g=0$ Riemann surface (i.e. the $N=2$ super-Virasoro algebra) $[9,10]$.

4. $\mathbf{~ B R S T}$ charge

In order to quantize a system with the $N=2$ superconformal algebra on the higher-genus Riemann surface, we first construct a brst charge. Following the method in [8], we
define a BRST operator on Σ corresponding to the $N=2$ superconformal algebra (14),

$$
\begin{align*}
Q_{B}=\sum_{n}: L_{n} \eta_{-n}: & +\sum_{r}: G_{r}^{i} \rho_{-r}^{i}:+\sum_{n}: H_{n} \hat{\eta}_{-n}:+\frac{1}{2} \sum_{n, m} \sum_{l=-g_{0}}^{g_{0}} C_{n m}^{l}: P_{n+m-l} \eta_{-m} \eta_{-n}: \\
& +\sum_{\alpha, m} \sum_{\beta=-g_{0}}^{g_{0}} H_{\alpha m}^{\beta}: R_{\alpha+m-\beta}^{i} \rho_{-\alpha}^{i} \eta_{-m}:+\sum_{n, m} \sum_{l=-g_{0}}^{g_{0}} B_{n m}^{l}: \hat{P}_{n+m-l} \hat{\eta}_{-n} \eta_{-m}: \\
& -\frac{1}{2} \sum_{r, s} \sum_{l=-g / 2}^{g / 2} E_{r s}^{l}: P_{r+s-1} \rho_{-s}^{i} \rho_{-r}^{i}:-\sum_{r, s} \sum_{l=-g_{0}}^{\bar{z}_{0}} D_{r s}^{l}: \hat{P}_{r+s-l} \rho_{-s}^{2} \rho_{-r}^{1}: \\
& +\sum_{r, m} \sum_{l=-\mathrm{g} / 2}^{g / 2} F_{r m}^{l}: R_{r+m-l}^{2} \rho_{-r}^{1} \hat{\eta}_{-m}: \\
& -\sum_{r, m} \sum_{l=-\mathrm{g} / 2}^{g / 2} F_{r m}^{i}: R_{r+m-1}^{1} \rho_{-r}^{2} \hat{\rho}_{-m}:-\alpha \eta_{-g_{0}} . \tag{20}
\end{align*}
$$

Here the constant α is taking into account the ambiguity in normal ordering of operators. As $\eta_{n}, P_{m}, \hat{\eta}_{n}, \hat{P}_{m}$ and ρ_{r}^{i}, R_{s}^{i} are the conformal and superconformal ghosts on the Riemann surface of genus g, respectively, they obey the following anticommutation and commutation relations

$$
\left\{\eta_{n}, P_{m}\right\}=\delta_{n+m, 0} \quad\left\{\hat{\eta}_{n}, \hat{P}_{m}\right\}=\delta_{n+m, 0} \quad\left[\rho_{r}^{i}, R_{s}^{j}\right]=\delta^{i j} \delta_{r+s, 0}
$$

and others vanish.
Next we check the nilpotency of the brst charge (20). As is well known, the nilpotency of BRST charge is a crucial test of the self-consistency of the BRST quantization procedure in superconformal field theories as well as the quantum self-consistency of superconformal algebras [11]. Since it is difficult to evaluate directly the square of the BRST charge (20), for simplicity, we define two pairs of new operators,

$$
\begin{align*}
\hat{L}_{n}=\left\{Q_{B}, P_{n}\right\} & =L_{n}+\sum_{m} \sum_{t=-g_{0}}^{g_{0}} C_{n m}^{l}: \eta_{-m} P_{n+m-l}:+\sum_{\alpha} \sum_{\beta=-\mathrm{g}_{0}}^{\mathrm{g}_{0}} H_{\alpha n}^{\beta}: R_{\alpha+n-\beta}^{i} \rho_{-\alpha}^{i}: \\
& +\sum_{m} \sum_{i=-g_{0}}^{g_{0}} B_{m n}^{l}: \hat{P}_{m+n-1} \hat{\eta}_{-m}:-\alpha \delta_{n, 0} \tag{21a}
\end{align*}
$$

$$
\begin{aligned}
\hat{H}_{n}=\left\{Q_{B}, \hat{P}_{n}\right\} & =H_{n}-\sum_{m} \sum_{l=-g_{0}}^{g_{0}} B_{m n}^{l}: \hat{P}_{m+n-l} \eta_{-n}:+\sum_{r} \sum_{l=-g / 2}^{g / 2} F_{r n}^{l}: R_{r+n-l}^{2} \rho_{-r}^{1}: \\
& -\sum_{r} \sum_{l=-\mathrm{g} / 2}^{g / 2} F_{r n}^{l}: R_{r+n-l}^{1} \rho_{-r}^{2}:
\end{aligned}
$$

$$
\hat{G}_{r}^{1}=\left[Q_{B}, R_{r}^{1}\right]=G_{r}^{1}+\sum_{m} \sum_{s=-g_{0}}^{g_{0}} H_{r m}^{s}: R_{r+m-s}^{1} \eta_{-m}:-\sum_{s} \sum_{t=-g / 2}^{g / 2} E_{r s}^{l}: P_{r+s-t} \rho_{-s}^{l}:
$$

$$
\begin{equation*}
-\sum_{s} \sum_{l=-g_{0}}^{\mathrm{g}_{0}} D_{r s}^{l}: P_{r+s-l} \rho_{-s}^{2}:+\sum_{m} \sum_{l=-g / 2}^{g / 2} F_{r m}^{l}: R_{r+m-l}^{2} \hat{\eta}_{-m}: \tag{21c}
\end{equation*}
$$

$$
\hat{G}_{r}^{2}=\left[Q_{B}, R_{r}^{2}\right]=G_{r}^{2}+\sum_{m} \sum_{s=-g_{0}}^{g_{0}} H_{r m}^{s}: R_{r+m-s}^{2} \eta_{-m}:-\sum_{s} \sum_{t=-\mathrm{g} / 2}^{8 / 2} E_{r s}^{t}: P_{r+s-l} \rho_{-s}^{2}:
$$

$$
\begin{equation*}
-\sum_{s} \sum_{l=-g_{0}}^{g_{0}} D_{r s}^{l}: \hat{P}_{r+s-l} \rho_{-s}^{1}:-\sum_{m} \sum_{l=-g / 2}^{g / 2} F_{r m}^{l}: R_{r+m-l}^{1} \hat{\eta}_{-m}: \tag{21d}
\end{equation*}
$$

Performing a lengthy calculation, we arrive at

$$
\begin{align*}
& {\left[\hat{L}_{m}, \hat{L}_{n}\right]=\sum_{t=-g_{0}}^{g_{0}} C_{n m}^{l} \hat{L}_{n+m-l}+\left(\frac{1}{4} D-\frac{1}{2}\right) \chi_{n m}} \tag{22a}\\
& {\left[\hat{L}_{m}, \hat{G}_{r}^{i}\right]=\sum_{s=-g_{0}}^{g_{0}} H_{r m}^{s} \hat{G}_{r+m-s}^{i} \quad\left[\hat{L}_{m}, \hat{H}_{n}\right]=\sum_{t=-g_{0}}^{g_{0}} B_{n m}^{l} \hat{H}_{n+m-t}} \\
& \left.\left\{\hat{G}_{r}^{i}, \hat{G}_{s}^{i}\right\}=\sum_{t=-g / 2}^{g / 2} E_{r s}^{l} \hat{L}_{r+s-l}+(D-2) \varphi_{r s} \quad \text { (no sum on } i\right) \tag{22b}\\
& \left\{\hat{G}_{r}^{1}, \hat{G}_{s}^{2}\right\}=\sum_{t=-g_{0}}^{g_{0}} D_{r s}^{l} \hat{H}_{r+s-t} \\
& {\left[\hat{H}_{m}, \hat{H}_{n}\right]=\left(\frac{1}{4} D-\frac{1}{2}\right) a_{n m}} \\
& {\left[\hat{H}_{m}, \hat{G}_{r}^{1}\right]=\sum_{t=-g / 2}^{8 / 2} F_{r m}^{l} \hat{G}_{r+m-l}^{2} \quad\left[\hat{H}_{m}, \hat{G}_{r}^{2}\right]=-\sum_{t=-g / 2}^{g / 2} F_{r m}^{l} \hat{G}_{r+m-l}^{1} .} \tag{22c}
\end{align*}
$$

As is well known, the nilpotent condition for the brst charge $Q_{B}, Q_{B}^{2}=0$, is equivalent to the BRST invariance of \hat{L}_{n}, \hat{H}_{n} and \hat{G}_{r}^{i}. This in turn implies that they should satisfy the superalgebra without the central extension terms:

$$
\begin{array}{ll}
{\left[\hat{L}_{m}, \hat{L}_{n}\right]=\sum_{t=-g_{0}}^{g_{0}} C_{n m}^{t} \hat{L}_{n+m-t}} & {\left[\hat{L}_{m}, \hat{G}_{r}^{i}\right]=\sum_{s=-g_{0}}^{g_{0}} H_{r m}^{s} \hat{G}_{r+m-s}^{i}} \\
{\left[\hat{L}_{m}, \hat{H}_{n}\right]=\sum_{t=-g_{0}}^{g_{0}} B_{n m}^{l} \hat{H}_{n+m-l}} & \left\{\hat{G}_{r}^{i}, \hat{G}_{s}^{i}\right\}=\sum_{t=-g / 2}^{g / 2} E_{r s}^{l} \hat{L}_{r+s-t} \quad \text { (no sum on } i \text {) } \\
\left\{\hat{G}_{r}^{1}, \hat{G}_{s}^{2}\right\}=\sum_{t=-g_{0}}^{g_{0}} D_{r s}^{l} \hat{H}_{r+s-t} & {\left[\hat{H}_{m}, \hat{H}_{n}\right]=0} \\
{\left[\hat{H}_{m}, \hat{G}_{r}^{1}\right]=\sum_{s=-g / 2}^{g / 2} F_{r m}^{s} \hat{G}_{r+m-s}^{2}} & {\left[\hat{H}_{m}, \hat{G}_{r}^{2}\right]=-\sum_{s=-g / 2}^{g / 2} F_{r m}^{s} \hat{G}_{r+m-s}^{1} .}
\end{array}
$$

The above 'anomaly-free' condition poses a strong constraint on the spacetime dimension D. Indeed, by equations (22a), (22b) and (22c) we obtain the critical dimension of spacetime for the $N=2$ superconformal theory on the genus g Riemann surface as $D=2$. This shows that the critical spacetime dimension is independent of the genus of the Riemann surface. This is because the conformal anomaly is a short-distance effect. It is also embodied in the singular terms of the operator production expansions in section 3.

5. Concluding remarks

We have constructed the $N=2$ superconformal algebra on a genus-g Riemann surface and the BRST charge corresponding to the superconformal algebra. We have also checked the nilpotency of the BRST charge, which leads to the critical spacetime dimension $D=2$ for the $N=2$ superconformal field theory. When $g=0$, the well known $N=2$ superconformal algebra on a trivial Riemann surface is recovered.

References

[1] Bonora L, Bregola M, Cotta-Ramusino P and Martinellini M 1988 Phys. Lett. 205B 55
[2] Bonora L, Rinaldi M, Russo J and Wu K 1988 Phys. Lett. $208 B 440$
[3] Krichever I M and Novikov S P 1987 Funk. Anal. Pril. 21(2) 46; 21(4) 47
[4] Belavin A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241333
[5] Friedan D, Martinec E and Shenker S 1986 Nucl. Phys. B 27193
[6] Chao-shang Huang and Zhi-yong Zhao 1989 Phys. Lett. $220 B 87$
[7] DiVcchia P, Peterson J L and Zheng H B 1985 Phys. Lett. 162B 327
[8] Fradkin E S and Vilkovisky G A 1975 Phys. Lett. 55B 224
Kugo T and Uehera S 1982 Phys. Lett. 197B 378
Fujikawa K 1982 Phys. Rev. D 252584
[9] Boucher W, Friedan D and Kent K 1986 Phys. Lett. 172B 316
[10] Green N B, Schwarz J H and Witten E 1987 Superstring Theory (Cambridge: Cambridge University Press)
[11] Chang D and Kumar A 1987 Phys. Rev. D 351388

