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Abstract. Using the Krichever-Novikov bases and the operator product expansions, we
construct the N =2 superconformal algebra on a genus-g Riemann surface and the BRST
charge corresponding to the superconformal algebra. We also check the nilpotency of the
BRsT charge, and obtain the critical dimension of spacetime as D=2 for the N=2
superconformal theory on the higher-genus Riemann surface.

1. Introduction

The superconformal algebras on a higher-genus Riemann surface £ (or called the
Krichever-Novikov superalgebras) and their representations play an important role
in the study of superconformal field theory over . The N =0 and 1 superconformal
algebras [1, 2] on Z are now relatively well understood, but the N> 1 superconformal
algebras are unknown. In this paper, we begin a study of the N =2 superconformal
algebra on the genus-g Riemann surface Z. Then we construct the BRST charge
corresponding to the superconformal algebra and check the nilpotency of the BrsT
charge.

2. KN bases

We consider a compact Riemann surface 3 of genus g with the two distinguished
points P, and P_ as well as local coordinates z, and z_ around them such that
z.{ P.) = 0. Krichever and Novikov {kN) [3] have shown that there exist a whole family
of meromorphic forms f; (Ax) which are holomorphic everywhere on X except possibly
for poles or branch points in P, and P_. And f{** are the bases of the space of the
meromorphic forms with the conformal weights A, called kN bases. The expansions
of f{*¥ near P, can be written as

(Ax)_ztjtx S('\)[1+O(Z=)](dzi)'\ (1)
wrhara V=lo_afe— 1) and ¥ is a real parameter. The index 7 in (1) takes intezar
Wil LJ\II} - 5 I\\S 1ty l '{ 1D @ Ival pPalalilviyl. 1ilv llluUA J UL L WanRvd llllc&cl
(half-integer) values when g is even (odd). For different values of (A, x), one can
obtain the meromorphic vector fields ¢; = f ", the meromorphic functions A, =f{*%,

the one-differentials w, =f{"", and the quadratic-differentials ;= f{*%. In ‘order to
describe the fermionic sector, we also need the meromorphic spinor fields g, = £ /%
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1differentials k, =f%>9 Ldifferentials h_,=f"*", They satlsfy the following
duality relations,
1 1
2 (Q)Q (Q . § Ai(Q)wj(Q) = 5ij
i 271 ), )

1 o
%écf ga(Q)kB(Q)—aaB ﬁ%cf hn(o)hﬂ(o)"saﬁ‘

where h1(Q)=h_.(Q) and Qe X. The contours C,={QeX, r(Q) =7} are level lines
of the univalent function 7(Q))=Re 80 dp, where dp, the third kind of differential on
= with poles of the first order at the points P, with residues +1, and @, an arbitrary
initial point, and as T +00, the contours C, become circles enveloping the points P, .

3. N =2 superconformal algebra on =

The N = 2 superconformal algebra on the higher-genus Riemann surface X is generated
by the energy-momentum tensor T(z) and its super-partner G'(z) (i=1, 2) and H(z)
with the conformal weights 2, 3/2 and 1, respectively. T(z), G'(z) and H(z) can be
expanded on the kN bases over X:

T(z)=% L,0"(z) (3a)
G'(z)=3% Gu{2)k*(z) (3b)
H(z)=Y H,»"(z). (3¢)

From (2} and (3), we can obtain the generators of the N =2 superconformal algebra
on X:

L,= 2—:—_‘_— dze,(z}T(z) (4a)
Gi,-—-—%—. dzg,(z)G'(z) (4b)
2m Je,
H, =ﬁ§crdzAn(z)H(z) (4c)
where we have used the following notation
A{z)=2"""E[1+0{z)] {5a}
wn(2)=2"""27[1+0(z)] (5b)
2.(z)=z""F"V 1+ 0(2)] (5¢)
k,(z)=z"""* 31+ 0(z))] (5d)
e,(z)=z""%"[1+0O(z)] (Se)
Q,(z)=z""%""[1+0(2)) (513
hi(z)=h_,(z)=2"""[1+0(2)] (58}

where go=3g/2, and z is the local coordinate in the neighbourhood of the point P,
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that vanishes at P, . (Note that one can also choose a local coordinate z_ that vanishes
at P..)

In the conformal field theory over a genus-zero Riemann surface [4,5], a
(anti-)eommutator can be expressed equivalently as a compiex contour integral. Gen-
eralizing it to the higher-genus Riemann surface we have

[Ly, L= § 35 dz""d)ie (w)e,(2)T(z) T{(w) (6)
i Gi=9 § B8 e (r)e (TR ) 0
(Lo Hol= §>§ dwdz WD T(IH ) (8)
c. 2w}

Gﬂ} § §c )zg.s(w)ga(z]G (Z)Gj( W) )

‘L H,]= S{’ 3[7 d“’dz An(W)g.(2)G (2 H (W) (10)
dwd o

[H,, Hr,,}—“]‘éc iuu—%;égmwmn{zm(szw) (1)

where the contours C,, envelop the point w.

It kas been shown [6] that the singular part of the operator product expansions
(opE) on the higher-genus Riemann surface X is independent of genus g and only the
ﬂon'smg“laf part depends on the genus g We can therefore obiain the opes on the 3
from the orEs [7] on the genus-zero Rlemann surface,

3D Tiw) +a..,T(w)
2z ~w) {z_w)z I~w

3G (w) +0WG'(W]+

F(2)T(w)=

(]G’(w)-.( o
T{Z)H(W)=GPE}%+%‘?_)+

G"(z)c;"(».;):RZ_J?_W33 25"_"",1)+

G‘{Z)Gz{wh({f—(z; f(f-(:)) (1)
n‘f(z)n‘f(w)=—4_(_z_§’;)_i+

H() G0 =1

H(:)GH )= A5

z—w)
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where the dots stand for the terms which are finite as z— w, and these terms are
g-dependent, while they do not contribute to the integrals in equations (6)-(10).

Substituting the above oPEs into (6)-(10), and using the following relations about
the kKN bases on X:

-1
e.(wen(w)—en(we,(wy= T Chulpim-i(w)

F==%0

8o
jgawlen(w)—gh(we,(w)= ¥ Hingeimp(w)

B=—8g

CAL W en(W)= T Bl imi(W)

I=—gp

g/2 (13)
2gr(w)gs(w)= Z E:ser+s-f(w)
t=—g/2
L]
2i[&(w)g (W)~ 8:(W)g (W)= L DpAresi(w)
=—8o
. g/2 .
2lgr(w)Am(w) = Z -Frmgr+m—f(w)
l=—gJ2
we obtain the N =2 superconformal algebra on X:
1) D
[Ln’ Lm}= Z C:lan+m—.l+—Xnm
i=—go 4
. go -
[Lmy G;]= Z HEmG:z+m—B (i"—"'la 2)
B=—2go
&y
[Lm: Hn] = Z BLmHn-i-m—l
i=-gp
o2 (14)
{G},Gi}= ¥ ElL..;+Dg, (no sum on i)
l=—g/2
EY D
{G:s G§}= Z Dier+s—! [Hm’ Hrl]:-—'anm
I=—go 4
g/2 . 8/2
{Hm: G}'] = Z FrmGE+m-l [Hms Gg] =- z Ff'mGld-m—I
f=—g/2 I=—g/2

where the structure constants are given by

. (
Com= ? dw[e,(w)en(w) = en(W)en(w) ]y m_i(w)
<

Hin= i dwlig. (w)en(w) = ga(w)e,(w)lkyrm_a(w)
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B, = —i; dw AL (w)en (W), m-r{w)
.

Ef-: =2 § dwgr(w)gs(w)ﬂr+s—1(w)

T

D=2 jg dwlg(w)gi(w)— g(w)g(w)]w,ss-i{w)

T

Flrm = Zi § dwgr(w)Am(w)kr+m—I(w)

T

and the central terms by

Xom =@ dwe,(wien{w) ¢n=9 dw gr{wjg.(w}
C, c,

Aum = 3€ dw A,(w)A(w).

In particular, setting g =0 in (15} and (16) one obtains

C:,m=(n—m)5,,0 Hgmz(%m_a)sﬂ.ﬂ
B!, =—nd, El.= 28,0
D{'s = 2i(f"‘5)51,0 F{'m = %ifsl.o
and
Xom = 3(1° = 1)8p1n0 @ = D(r*—3) By = M8y
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(15)

(16)

(17)

(18)

Substituting the structure constants and central terms into (14) we obtain the following

superalgebra,
[Ln, Lm] = (ﬂ - m)Ln+m +%D(ﬂ3 - n)6n+m,0

[L., GLl=(Gm—a)Gpa (i=1,2)
[Lms Hn]= _nHm+n
{Gi, G} =2L,,,+D{r’ —3)8,..0 (no sum on i)

{G}, G} =2i(r-s)H,.,
[H,, H,]=3Dm8, mo
[Hn, Gl1=4GP..,
[H,, G]= —$iG s,

(19)

This is just the well known N =2 superconformal algebra on a g =0 Riemann surface

(i.e. the N =2 super-Virasoro algebra) [9, 10].

4. BRsT charge

In orderto quantize a system with the N = 2 superconformai algebra on the higher-genus
Riemann surface, we first construct a BrsT charge. Following the method in [8], we



2916 Kuang Le-man

define a BRST operator on X corresponding to the N =2 superconformal algebra (14),

QB=Z:Lnn—n:+E:GiP +Z HT’— +2 z Z Cnm PrH-m I'TI mnfn

nm l=—gq

+ Z Z Hgm:R:r-i-m—,Gpl—an— i+ Z Z B : n+m-— 17’ aM-m:

am B=—g nm l=—g,

1 8/2 f -‘ i &
_EZ Z Ers:Pr+s~lpLsp'—r:_Z Z Drs P+s Jp—sp—r

s I=—g/2 rs l=—g,
g/2 y
+Z z F r+m Ip rn—-m
rm I=—g/2Y
g/2 ;
_2 . 2/21: : r+m 1P rp— TON g, (20)
nmi=—g

Here the constant « is taking into account the ambiguity in normal ordering of operators.
As 4., P, #., P, and pi, R are the conformal and superconformal ghosts on the
Riemann surface of genus g, respectively, they obey the following anticommutation
and commutation relations

{nm Pm}=6n+m,0 {'ﬁn, Jia’i-n]'=6n+m1,{) [pi:RJL]:SUBH-S,O

and others vanish.

Next we check the nilpotency of the BRsT charge (20). As is well known, the
nilpotency of BrsT charge is a crucial test of the self-consistency of the BRST quantization
procedure in superconformal field theories as well as the quantum self-consistency of
superconformal algebras [11]. Since it is difficult to evaluate directly the square of the
BRST charge (20), for simplicity, we define two pairs of new operators,

gO . :
an{Qﬂ, Pn}= +Z Z Crlm n- Pn+m—f:+2 Z Hﬁn :R:m+n—,ﬂpr—a:

m I=—gg a B=—gg

+Z Z Brrnn :ﬁm+n—lﬁ—m: _aan,o (21‘1)
m

A A %o A gjz
Hn={QB; Pn}an_Z E Bf'nn :Pm+n—l7]—n:+z. Z Ff—n: R3+n—fp'1—r:

m l=—gq r i=—g/2
82 4 1 2
L1 iRl (21b)
r I=—g/2
G1=[Qn RI=GI+S T Hin:R! s ¥ EL:p
r_[QBs Rr] - r Z Z *m -Rr+m~sn— Z Z rs r+s— !p-s
m s=—gp s I=—g/2
g/2
_Z Z Drs Pr+s Ip—s +Z Z F :Rr+m 17]‘— (21C)
s I=—go m l=—g/2

n - £/2
G =[Qp, RIN=G!+Y ¥ Hip:RYp omi=L T EniPocipis

m s=—gq s l=—g/2

e [ 8/2 f 1 a
_Z i Drs :Pr+:—lpl—s: —Z Z Frm: Rr+m—!n—m: (2ld)

s I=—gp m l=—g/2
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Performing a lengthy calculation, we arrive at

go .
I:Lm;-Lm]= Z Cftan+m7[+(%D—%)Xnm

1=—gg

. {22a)
[ims é:-]= Z Hf-m Ai+m—s [ ﬁ ]= Z B An+m i
s==go I=—gp
Al oA g/2 P
{G!r’ G.'s = z Erer+s—i'+(D_2)¢rs (no suim on l)
1=—
e (226)
A~ -~ o A
{G},G}= T DLH..
I=—gp
[I:‘Im: ﬁn = (lD_l)anm
]=GD -3 (220)
5 = &2 ! 'y A2 &2 I Al
[Hm! Gll'] = Z F GH—m-J [Hm, Gr] == Z F.rm r+m=l-
1=—g/2 I=—g/2

As is well known, the nilpotent condltlon for the prsT charge Qp, Q% =0, i
equivalent to the prsT invariance of L,,, H and G' This in turn implies that they
should satisfy the superalgebra without the centrai extension terms;

A ~ B9 A A A %0 A
[Lm: Ln]= E Cilerl“’m—I [Lms G:']= Z Hls'ﬂ'l :—+m—s
I=—g, 5=—go
A il n P /2
[Lms [{n]= Z B:lmHn+m+I {Gtr’ G_l;} = Z Erer+s ! (HU sum on l)
1= gy 1==g/2
Al 2}_ Z Drer+s—i' [I:Ims ﬁn]=0
I=—go
A oA /2 N As g/2
[Hm: G:] = Z F r+m s [Hms Gr] = Z F:mGr+m—s
s=—g/2 s=—g/2

The above ‘anomaly-free’ condition poses a strong constraint on the spacetime
dimension D. Indeed, by equations (22a), {226} and (22c¢) we obtain the critical
dimension of spacetime for the N =2 superconformal theory on the genus g Riemann
surface as D =2, This shows that the critical spacetime dimension is independent of
the genus of the Riemann surface. This is because the conformal anomaly is a
short-distance effect. It is also embodied in the singular terms of the operator production
expansions in section 3.

5. Concluding remarks

We have constructed the N =2 super

and the BRST charge corresponding to the superconformal algebra. We have also
checked the nilpotency of the BRST charge, which leads to the critical spacetime
dimension D=2 for the N =2 superconformal field theory. When g =0, the well
known N =2 superconformal algebra on a trivial Riemann surface is recovered.

lnnhru on agenus-g |

gebraonag nn surface
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